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On-line Gibbs learning. I. General theory
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We study a model of on-line learning, the on-line Gibbs algorifl@hGA), which is particularly suitable
for supervised learning of realizable and unrealizable discrete valued functions. The learning algorithm is based
on an on-line energy functiol that balances the need to minimize the instantaneous error against the need to
minimize the change in the weights. The relative importance of these terfhsidetermined by a parameter
\, the inverse of which plays a similar role as the learning rate parameters in other on-line learning algorithms.
In the stochastic version of the algorithm, following each presentation of a labeled example the new weights
are chosen from a Gibbs distribution with the on-line endfggnd a temperature paramefierin the zero-
temperature version of OLGA, at each step, the new weights are those that minimize the on-lineeefiégy
generalization performance of OLGA is studied analytically in the limit of small learning rate)+ex. It is
shown that at finite temperature OLGA converges to an equilibrium Gibbs distribution of weight vectors with
an energy function which is equal to the generalization error function. In its deterministic version OLGA
converges to a local minimum of the generalization error. The rate of convergence is studied for the case in
which the parametex increases as a power law in time. It is shown that in a generic unrealizable dichotomy,
the asymptotic rate of decrease of the generalization error is proportional to the inverse square root of presented
examples. This rate is similar to that of batch learning. The special cases of learning realizable dichotomies or
dichotomies with output noise are also treate1063-651X98)07808-9

PACS numbeps): 87.10+e

[. INTRODUCTION two parameters. One is temperatufewhich denotes the
level of stochasticity in the algorithm. The second parameter
Constructing a general model of on-line learning is andenoted as\. characterizes the size of the changes made in
important challenge in the theory of learning and its applica€ach step. The inverse afis analogous to the learning rate
tions. A plausible definition of the goal of supervised learn-constant in conventional on-line learning algorithms. OLGA
ing from examples is the minimization of the generalizationis applicable to learning general functions, including smooth
error. In this work we focus mostly on supervised learning ofand discrete valued functions. In this pajgeaper ) we de-
discrete valued functions such as dichotomies, which are exine the algorithm and study analytically its general proper-
tremely useful for decision and classification tasks. A generalies, using methods of the theory of stochastic processes
model of batch learning in which the learner has free acceds!5-19,30,31 In the following paper(paper 1) we apply
to a fixed set of examples is based on minimization of theOLGA to specific systems and analyze its behavior using
total training error. Indeed, as the size of the training Bet, mean-field theory as well as numerical simulations.
grows this procedure converges uniformly to the minimum The outline of paper | is as follows. In Sec. Il we define
of the generalization error. In systems with continuouslythe algorithm. In Sec. Ill the general properties of the algo-
varying weights, the rate of convergence to this limit follows rithm at nonzerdl are investigated. This is done for the limit
a power law[1—6]. For example, in learning Boolean func- of large A, namely, vanishing learning rate. In Sec. IV the
tions which can be perfectly realized by the system the genproperties of OLGA in the deterministic limii.e., T=0),
eralization error decreases to zero aB.1h learning a ge- and large\, are derived. In Sec. V the thermodynamic limit
neric unrealizable Boolean function, the power law igR/ of OLGA (in which the number of weights approaches infin-
[2—12). A similar general model for on-line learning of dis- ity) is investigated. The results are summarized and dis-
crete valued functions has been lacking. The conventiongtussed in Sec. VI.
on-line algorithm is based on the gradient of the instanta- A preliminary version of the work has been presented in
neous errof13—26. For a sufficiently small learning rate, it Refs.[32] and[33].
converges to a local minimum of the generalization error
(although not necessarily to the global @nelowever, this
algorithm is not applicable to learning Boolean functions or Il. THE ON-LINE GIBBS ALGORITHM
other discrete valued functions, as their instantaneous error
cannot be differentiated. Thus even for the simple single-
layer perceptron there has not been an on-line learning algo- We consider a learning system defined by a function
rithm that guarantees convergence to a minimum generaliza=(s,w), wheres is the input vector andr is the output,
tion error for a general unrealizable ryle0,27—-29. which for simplicity is taken as a scalar. The target task is a
The present paper is the first of two papers that investigateeal valued functiornog(s). At each presentation of an ex-
in detail a model of on-line learning, which we call the on- ample, numbered by the integar the system is given an
line Gibbs algorithm(OLGA). The algorithm is specified by input vectors® and the desired output)= oy(s"). The in-

A. The algorithm
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puts are drawn at random from a distributiBs. For each
example there is an error functiefw;s) which measures the
dissimilarity between the system outpatand the desired
value o

We denote byw the current weight vector, i.e., the
weights evaluated aften—1 steps, and byw’ the new
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The free energy, Eq4), serves as a generating function
for the moments of the change in the weights at each step.
Defining

weight vector, which is evaluated following the presentationit is straightforward to see that

of the nth examples=s". Givenw ands the update rule for
evaluatingw’ is based on the energy function

D

A
E(W'|w,5)=e(W';9)+ EHW' — w2

It is an energy function in the space of the new weights
which depends parametrically @nands. The first term inE

represents the cost incurred by the error due to the new ex-

Aw=w'—w, (6)
19
<AW>=—me(W,s). (7
The fluctuations imAw obey
2
AW AW c=— f(w,s)+\ & (8)
( i J>C ,87\2 aWi&Wj ( ) i

ample. Minimizing this instantaneous error is not a gOOdwhere(Aw AW,)o=(Aw,Aw;) —(Aw,)(Aw;) and () is a
i j/C— i j i j

strategy as it will lead to large changes in the values of th

changes in the weights at each step. TIkisepresents a

; . ) ) hermal aver i.e., aver ver' using the on-lin
weights which will quickly erase past knowledge stored mq ermal average, .., average over using the o ©

the current weights. In order to avoid such changes we ad
the last term which prevents the system from making bign

ibbs distributionP(w’|w,s), Eqg. (2). In a similar manner,
igher-order connected correlationsfof can be derived by
igher-order derivatives df(w,s).

compromise between the need to satisfy the new example

and the need to minimize the changes in the weights at each

step.

B. System architecture

We will consider in this work the following classes of

OLGA is a stochastic update rule. Given the currentpnetwork architectures.
weights and the new randomly sampled example, the prob- Smooth networksThis class is defined by the conditions

ability that the new weight vector &’ is given by

1
P(W’|W,s)=mexr{—gE(w’lw,s)), 2

which we callthe on-line Gibbs distributionThe normaliza-
tion functionZ can be written as

Z(w,s)=ex% - gf(w,s)>, 3
where
A
g f(w,s)= —Inf dw’exp{ - 'BTHW'—WHZ— ge(w’,s)) .
4

Note thatf depends orw and the new example. The full
process can be described as a Markov pro¢issa fixed
sequence of examplds}),

P(w’,n;{s})=f dw P(w'|w,s)P(w,n—1;{s}), (5

whereP(w,n;{s}) is the probability density of the weights at
time stepn which depends on the sequencerméxamples
that were presented so far.

The algorithm depends on two parametdrgnd\. The
temperaturd specifies the level of stochasticity in the algo-

rithm. In the limit of zero temperature the algorithm reduces

to choosing as the new weight vector one that minimies

The parameteh determines the size of the change in the

weights at each presentation.

that the error functiore(w,s) is twice differentiable with re-
spect tow. In the context of multilayered perceptrons it re-
quires that all the neurons are smooth sigmoidal functions of
their inputs and that the error function is a smooth function
of the output of the system. Of course a network with thresh-
old units does not fall into this class.

Networks with discrete outpuln this class the output of
the system is of the form

a(w,9=F({g(w,9)}). ©)
The functionF is a function of a set of variablgg,} which
has discontinuities ag,=0. The variableg,(w,s) are as-
sumed to be differentiable functions of the weights. Finally,
it is assumed that there is a finite density of inputs at the
decision boundaries of the system. These boundaries are de-
fined by the vectors that obeyg,(w,s)=0.
A simple case is théhreshold-smooth networkhe output
of which is of the form
o(w,s)=sgrig(w,s)], (10)
whereg is a smooth function ofv. An example is the single-
layer perceptron[34]
o(w;s)=sgnw-s), 1y
where boths andw are N-component vectors. Herg is a
linear function of the weights. Another example of a
threshold-smooth network is a multilayer network with a
thresholdoutput unit and sigmoidal hidden units,

|

M

Izl Jitanh(w; - s) (12

cr({w|},5)=sgr<
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wherew; is the weight vector of théth hidden unit and), is
the weight connecting thih hidden unit to the output unit.
Hereg,(w,s) =tanh{w;-s).

Another important case of a threshold-smooth network is
a two-layer committee machiri&5]. Here

M
o({wi},s) =sgr< kZl SgnWy- s)) : (13
wherew is the weight vector of thé&th perceptron “com-
mittee member.” Herey,(w,s) =sgnfwv,-s). An additional
example is a winner-takes-aWTA) network which is ap-
propriate for classification tasks. In this network, the output
takes integer valuels=1, . . . K, according to

o({w,},s)=argmax(w,-s). (14
(w9 gmax(w-s) ) FIG. 1. Schematic illustration of OLGA update rule for a system

with binary error. The solid line denotes the hypersphere in weight
C.OLGA at T=0 space centered on the current weight vegtowith a radiusy2/\.

At T=0 our algorithm reduces to finding at each step thePnly if the nearest weight vectow’ which satisfies the new ex-
global minimum of the on-line energy, E@l), given the ample Iie_s within this hypersphere is an up%w’) made. The
current weights and the new example. We now describe thdashed line denotes the hypersphere on whitties.
implementation of the zero-temperature algorithm for the i , ) . )
two classes of problems defined above. Otherwise,w’=w. See Fig. 1. In general, this computation

Smooth networkdn this case, we may attempt to deter- May be intensive. However, as we will demonstrate later, in
minew’ by locally minimizingE, Eq. (1), i.e., by solving for ~Many cases one can write explicitly relatively simple update
w’ the equation rules that implement the above algorithm. First, we derive

some general properties of the algorithm.

1
w =w——=Ve(W';s), 15
A ( ) (19 D. Generalization error

whereV is gradient with respect ta'. In the general non- As in other on-Iine.supervised learning algorithms thg
linear case and moderate values\pbolving these equations Performance of OLGA is measured by the resultant generali-
may be difficult. In additionE may have more than one local zation error. The generalization functieg(w) is defined as
minimum. However, in general we are interested in the limit _ .

. ) : ; w)= w;s))), 1
of large \, in which caseE is expected to have a unique ég(W)={(e(W:9))) @n

minimum which can be evaluated by an expansion k) &
will be shown in Sec. IV A. y P " where(( )) denotes average with respect to the input distri-

Networks with discrete outpuThe novelty of our algo- Pution Ds. To measure the average generalization error of
rithm lies mainly in learning nonsmooth problems, such adhe learning algorithm we define the probability distribution
networks with threshold neurons. As an example we will
focus on learning Boolean functions where o, and P(w,n)=((P(w,n;{s}))), (18)
e(w,s) take on{0,1} values. In this case, minimizing im-
plies that the current Welgl\'ﬂl is Changed Only ifv does not where the average is over all possib|e sequences ex-

satisfy the new example and in addition there is a weightmples. The equilibrium weight distribution is
vector sufficiently close tav that does satisfy the new ex-

ample. Specifically, the algorithm consists of three prin-
ciples.

(1) Error correction If e(w;s)=0 then the minimum oE
is clearly w'=w, hence no change is made. Furthermore o . i
when e(w:9)=1, and a move is made, it will always be to a The (averagg generalization error at stapis defined as
new weight vector that does satisfy the new example.
Whether such a move is performed depends on the two fol-
lowing rules.

(2) Minimal change If e(w;s)=1 then one has to search
for the nearestvector tow that satisfiesthe new example.

(3) Bounded changeThis new vector is chosen as’
provided that it lies within a hypersphere centerediowith
radius2/\, i.e.,

P..(w)= lim P(w,n). (19)

n—oo

€g(N)= f dwP(w,n)eq(W). (20

Finally, the equilibrium generalization error is defined as the
long time limit of the average generalization error

—

w=li = | dwP,, . 21
W' —w] < V2. (16 €= lim eq(n) f WP(W) €g(W) (29)



2338 H. SOMPOLINSKY AND J. W. KIM PRE 58

ll. GENERAL RESULTS FOR LARGE M AT NONZERO T mean drift of the weight vector is of the order of\1/It

consists of a gradient descent with the generalization error as

in m ;hllismsite it'_o)gov\\//fhﬁgilgéetg:: ?a?gti r;’:lel ;iJSrolE:r?east c;‘ ?)l(‘é:’f‘[he potential. These results can be cast in the following sto-
b b chastic equations:

positive value. In Appendix A we show that in this limit the

leading terms in the on-line free energy, E4), are of the 1
form Aw'=— XVeg(w) +2", (25
N [\B N . . .
f(w,5)= Em i +e(w,s)+ S(W,s), (22) wherez" is Gaussian uncorrelated noise, with zero mean and
’7T
. . . . o 2T
where 8(w,s) vanishes in the larga limit. Substituting Eq. (z] zj)= Tb‘nméij . (26)

(22) in Egs.(7) and(8) and averaging oves, we obtain
We now consider the temporal evolution of theerage

((Awy))y=— lVeg(W)—I—O()\_l_V), (23)  weight distribution, Eq.(18). This distribution can also be
A written as
2 — _yn—1_ n
<<<AWiAWj>>>: B_)\(Sij +O()\*1*V), (24) P(W-n) <<5(W w Aw )>Aw)nfl1 (27)

where( ), denotes thermal and quenched average over the

where v=1 in the smooth case ang=3 in the threshold- increments at tha step, i.e., integrating with the distribution
smooth case. See Appendix A. P(w+AwW"|w) ={{P(w+ Aw"|w,s))). The averagé---),

Equations(23) and (24) are our fundamental results for denotes average over all possible weight vectors atnthe
the behavior of the algorithm at largeand finiteT. These —1 step, i.e., integrating with the distributioR(w""1,n
equations imply that the weight vector executes a random-1)={(P(w""1,n—1;{s}))). Expanding the right hand
walk with a step size of the order of JB\. This thermal side of the above equation in powers&i" and using the
noise is mostly due to the isotropic quadratic ternkinThe  results of the preceding paragraph, we obtain

AP(w,n)=P(w,n)—P(w,n—1) (28

2 1 n—1 1 2 n-1 —1-v
x| | 2BV ) V4 592 sw—w ) | +O0 ). (29)

n—-1

A proper large\ limit is obtained by defining a scaled Our result implies that OLGA converges at sufficiently

time variable long time to a distribution which becomes sharply centered
at the desired weight vector, i.e., the global minimumnepf
7=n/\ (30 in the limit that T~0 after taking the limi—o. To actually
) . . o reach this target, one has to specify an appropriate schedule
and constructing the continuous-time limit by for making\ and 1T sufficiently large. This schedule will

determine theate of convergence of the system to the opti-
mal performance. In general, to guarantee convergence to the
global minimumT has to be changed in a slow logarithmic

Using the above result we obtain tHagw, ) obeys the fol- Schedule
lowing Fokker-Planck equatiofi5,19,31:

P(w,7)=lim P(w,\ 7). (31

A—oo

T(n)= To (34)
In(n)

J
ﬁ—TP(w,T)=V-[Veg(w)P(w,T)]+TV27>(W,T). (32)
In many cases, power-law rates are sufficient. We will not

This result implies in particular that the stationary distribu-discuss further the issue of schedulingand T for the sto-
tion of the weights is chastic OLGA.

Po(W)=Z"texd — e5(W)/T]. (33 IV. RESULTS FOR LARGE X\ AT T=0
Thus in the largex limit at finite T our algorithm converges A. Smooth networks
to an equilibrium state which is a Gibbs distribution with  The large\ limit of OLGA in the case of smooth net-
€4(W) as the energy. This is analogous to the stationary statworks can be derived by expanding E45) in powers of
of the statistical mechanical batch learning in thigh- w’—w. The leading order can be evaluated by substituting
temperature limif1,2]. in the argument of, yielding
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1 The matrix Hj; is the Hessian ofeg(w), namely, Hj;
W' =w— =Ve(w;s). 35 =g,9;e4(W*). The matrixT;; is the diffusion matrix evalu-
ated atw*. Thus the equilibrium distribution off has a form
Thus for smooth problems and laryeur algorithm reduces 0f @ Gaussian peaked at the local minimunegf i.e., atw*,
at zero temperature to the conventional stochastic gradiemvith a width of the order W/\. Finally, the equilibrium gen-
descent algorithm with a small learning rate).1¥iewing  eralization error is
the stochastic gradient descent algorithm as minimizing an

instantaneous cost function has been proposed by Kivinen 1 i
and WarmutH 36] for linear systems. €= €min 2\ ZJ: Hij{uig), (43
From Eq.(35) the low-order statistics of the single step
can be obtained, where the average overis with respect to the equilibrium
1 distribution P..(u).
Aw)))=— Ve (W) +O(N"?), 36
((awp) A g( ) ( ) 38 B. Generic threshold-smooth networks
2 Due to the threshold operation of the network’s output the
(((Aw;Aw)))) = FTij(w)ﬂLO()\*:‘). (370 large\ limit of the d_eterministic algc_)rithm is more compli-
cated than the previous case. For fixed inguf o,g(w,s)
The diffusion matrixis <0, the minimal change in weigltw=w'—w that will cor-
rect the error is such that
Ti(W)=3({d;e(W,8)d; €(W,9))), 38
172 AW e 9 0=g(W 9~g(W.9+Aw-Vg(w,9, (44
whered;=d/dw;. The higher-order moments are of a mag- ] )
nitude that is higher order in A/and can be neglected. where we have kept only the first-order _termsﬂAxWH since
Using methods similar to that of the preceding section onéhe magnitude of the step will be small in the langéimit,
can define a scaled time variable and V stands for gradient with respect W unless stated
otherwise. Minimizing with respect taw yields
T=n/\ (39
and derive a continuous time Fokker-Planck equation for the Aw= —g(w,s)Vg(W,s)/||Vg(w,s)||2. (45)
weight distribution,
Incorporating the bounded change condition, the above up-
date is executed if and only if
J
g7 W)=V [Veg(WP(W,7)] 0< — 009 (W, )/ Vg(w,9)]| < 2/X. (46)
1 Otherwisew’=w.
Y |§1: Gidi[Ty(WP(w,n)].  (40) It is convenient to introduce the notation

g(w,9=g(w,s)/[[Vg(w,s)||. (47)
These results are similar to the standard on-line gradient de- ) o . )
scent algorithm in the limit of zero learning rate. The aboveNote that in the larga. limit whenever there is a change in
equation implies that as long de,(w) is not small, the the weights,
diffusion term which is of the order of A/can be neglected ~
and the evolution can be described as a deterministic gradi- Vg=Vg(w,s)/[[Vg(w,9)| (48
ent descent towards a local minimum &f(w), to be de- ) ) .
noted byw* . Near the local minimum the drifting “force” is ~ Since a change is made onlyg{w,s)~0. Thus the update
small and is comparable to the diffusion term. To describdule in the largex limit is
the dynamics near the local minimum we write

Aw~ —g(w,s)Vg(w,s) (49)
u=(w—w*)y\. (41)
provided that
The distribution of these scaled weights obeys
0< —0yg(W,s)< V2I\, (50)

J
E_'P(U,T):H”a,[UJ'P(U,T)]‘i‘; T”a,aJP(U,T) (42)

see Fig. 2. Therefore the averageof in a single step is

(Aw))y= lim ((=g(w,9) Vg(w,5) O (— 00g(W,))O (5,d(W,s) + V2/\))), (51)

A—00
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W Space —  (oo(@W,9)Vg(W,S)). (54
/\ Since

g>0 Veg(w)=V({O(~ 00g(W,5)))) (55)

=((8(g(W,9)[— aoVg(W,9)1)), (56)

g=0 we obtain

1
((Aw)) == S Veg(w) (57

in the large\ limit. In a similar fashion we obtain

FIG. 2. Schematic illustration of OLGA in the case of laige
Solid lines show surfaces in weight space defined by constant val- (AW AW;)) = iT--( ) (59)
ues ofg(w,s). The vectors is the input of the new example. When U\
an update is made the new weight vectowis=w+ Aw whereAw
is orthogonal to the surfaag(w,s) and its magnitude is such that where
w’ lies on the surfacg(w’,s)=0, see Eq(49).

2
where as beforé( )) is the average over input distribution, i (W)= = ((8(g(w,8))d,9(W,5)9;9(w,s)/[[Vg(w,9)])))-
Taking into account only these inputs and assuming that the (59)
input distributionPy(s) is smooth and nonvanishing at deci-
sion boundary, we decomposs as s=s, +s where Finally, it can be shown that the leading correction to Eq.
g(w,s,)=0 ands is orthogonal to the decision boundary (57) is of the orderO(1/A*?). These results imply that the
and decompose the average osas an average ovey and distribut?on ofw obeys a Fokker-Planck equation in terms of
s, , separately. SinckAwil for fixed w is O(1/y\), the in-  Scaled time
puts which satisfy the bounded change condition lie in the
narrow band which i€©(1/y\) from the decision boundary
g(w,s)=0. See Fig. 3. Thus

T=nlN\, (60)

17 1
o _ = PW,7) =V [Veg(W)P(W, 7) ]+ K&iaj[Tij(W)P(W:T)]-
<<AW>>~JO dZK<UO(SJ_)Vg(WlSL)>>PO(Sl) (52) (61)

from which we obtain Thus, near a Io_cal minimum, the proper scale of the fluctua-
tions of the weights is

<<AW>>~%((ooVE(w,sl)»po(sﬂ (53 u=(w—w*)\" (62

and the distribution oti obeys a Fokker-Planck equation of
the form of Eq.(42). In particular the equilibrium distribu-
tion of w is Gaussian with a meaw* and a width of the
order||éw|| of the order Y4 Thus

§ Space

€~ €minT O( Sw)%~ €mint O

N

. (63

C. Threshold-smooth networks with output noise

In this section we consider the case of a threshold network
that learns a rule generated by a teacher of the same archi-
tecture as the learning system except for an output noise in
the teacher’s labels. Thus the labels provided by the teacher
are of the form

FIG. 3. Average ofAw over the input space for fixed. Solid ) +s9rig(wo,s)]  with probability 1-p

line and dotted line show the decision boundaries of the student To(S
[g(w,s)=0], and the teachefg(wy,s)=0], respectively. The

shaded regions denote the inputs that induce changes in the weighwhere 0<p<1/2 is the probability of error in the label pro-
thus contributing to the average afv, see Eqs(51) and(52). vided by the teacher. This form of noise is special in that it

N —sgrig(wgp,s)] with probability p,
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generates errors with a probability which is independent othe generalization error in the case wherie chosen to grow
the inputs. Other than this noise the rule is realizable by thevith time. We will consider here only the case of a fixed
student. Although Eq51) holds also for this case, the evalu- power-law schedule fox,
ation of the large\ limit in this equation which was per-
formed in the preceding paragraph is not valid here. The A(n)=N\on". (71)
reason for this is the fact that the density of inputs that gen-
erate errorgother than those generated by the output noise
is itself vanishing asv—w,. Therefore forw close tow,
both oy and g change signs for the same inputs. Hence
integrals over the decision boundary, such as in E§2)
and(54), are meaningless a&i=w,.

In Appendix B we outline the derivation of the large
limit in the case of output noise near the global minimum
w=w,. We find that if we scale the weights as

The effect of such a schedule has been discussed in detalil
[10,27-29, in the context of time-dependent learning rates
of on-line learning. Essentially, the continuous-time master
'(or Fokker-Planckequation forP(w, 7) for fixed large\ can

be mapped into the corresponding equation for the case of
time-dependenk by substituting\(7) for X provided\ does

not increase too fast. The maximum allowed rate of increase
is such that the scaled timds constant. We now summarize
briefly the results for the power-law schedule Yofin the
cases analyzed in the previous paragraphs.

u=(w—wo) VX, (64) (i) Smooth networksAccording to the scaling of time, Eq.
) (39), the power law must obey
then the equations of the momentswére of the form
Oo=v=<l. (72
((Au))y=— iFi(u), (65) In the case of less than optimal schedule, iwecl, there
NN are no restrictions on the prefactog, and the scaling of the
fluctuations in the weights with time is
2
((Auduj))=—=T; (W) (66) e 1 )
N w—w*=0 . 73
Y N (

[see Appendix B for expressions fd¥(u) and Tj;(u)].  The average generalization error approachgs as
Similar equationgwith the same prefactor 1) hold for

higher-order moments. This form implies that one can write
down a continuous-time master equation f{u, 7), €g(N)= €mint O F ' (74)
d _ i , see Eqgs(41) and (43).
E-P(U’T)_f Du'T(u'[uP(u’,7), (67) The optimal schedule is
with A(N)=X\on, (75
where\y must be less than a system-dependent In this
n 69 case
=—
W 1
w—w*=0[—], (76)
and T(u’|u) is a time-independent transition matrix. This yn
master equation does not hava a@ependence. It converges 1
in general to a non-Gaussian equilibrium distributidp(u). eg(N)=~ epnt+ O _) _ (77
Thus the fluctuations ofv aboutw, are of the order n

(i) Generic threshold-smooth network&ccording to Eq.

lw—wg| =0 i (69) (60) the scaling of time with\ is, in this case, the same as in
0 IN the smooth networks. Hence, the allowed range’ @6 the
same as Eq(72). According to Eq.(62), the scale of the
and fluctuations in the weights is different,
1 -0 2 78)
w—w* =
€.~ €mint O(||oW|)=p+0O K) (70) /4
and similarly,
[see Eq(91) below].
1
D. Time-dependenti €g(N)~ €mint O( \/?) ' (79

Until now we considered the case of fixed and laxgend T
derived the dependence of the equilibrium average generali-
zation error omx. Now we consider théime dependencef A(n)=Agn, (80

he optimal behavior is
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. 1 ((Au))
w—w* = W‘ , (81) _ _ _
~{(—g(Wo+u,5)Vg(Wg+Uu,5) 0 (— gog(Wo+Uu,9)))).
1 (88)
€q(N) = €émn+ O(ﬁ) ' ®2 Sinceaog(W,,9) is positive for alls, nonzero contribution to

. _ _ Au comes only from inputs near the decision boundary of
(iii) Threshold network with output noisén this case the W,, namely, for those inputs for which(w,,s) is of the

sc:;trllng or:(;t:nmerlsndlffiﬁnt, as seen from EGS), and the order ofVg- u. Integrating over this region in the input space
corresponding range atis we obtain in the limit of smallul,

2
(Aup)~— << 5(9)VgM>> S @
val

Osv=2. (83

On the other hand, the scale of the fluctuations is the same as
that of smooth networks, as seen by E64). If the power ' . o
law is less than optimal, i.ev<2, then for all positive values Wwhereg is evaluated atvy. In this equation in the larga

of the coefficient\ o the generalization error scales as limit, the solution of this difference equation is of the form
1 )~ =2 (90
€g(N)~€mint O \/? . (84) u(n)=~ n’

Finally, in the realizable case, is of the form

eg(Wo+u)=((8(9)|Vg-ul)), (91)

from which we conclude that

The optimal behavior is obtained for
A=\oN?, No<\c (85)

in which case
1

Eg(n)=0(— .

= (92

1
ﬁ) . (86)

€4(N)~ €mint O

: V. THE THERMODYNAMIC LIMIT
For optimal schedules of, Ay has to be smaller than a

system-dependent cutoff. . Since\. depends on unknown Another interesting limit where the behavior of the algo-
target rule and input distribution in general, the upper boundithm can be analyzed is the case where the number of
of A¢ is not known to the learner. K>\, theney con-  weightsN is large, in which case an appropriate thermody-
verges toen, with suboptimal rate in the generic case agd namic limit can be defined. We will use scales of weights

remains finite in the pure output noise c488]. such that the components; are of order unity(i.e., their
magnitude remains finite dd goes tox). In addition, the
E. Realizable rules atT=0 and A=0 error functione(w,s) is of order 1. A nontrivial thermody-

. . i namic limit requires that
The problem of learning a realizable rule in a threshold

network is a special case of the preceding section with zero N

noise (P=0). The main difference between the noisy case B==, (93

and the noiseless case is that in the case of a realizable rule T

Svl‘ecrﬁ(;o;\éz?\e/;Szgn;?t(.)rt;]cealrlgéggze};??ﬁgei;vtvhe ;%U; YseCtO(/vhere'Nl' is of order 1. This guarantees that the on-line free
: . energy is extensive.

close to the teacher vectary, then the minimal change that . - -

corrects the instantaneous error is small. This is becausgwltisaan :iﬁ SGh;uvggi;Za\tN:tnhTheeI%ﬁ:v:/lir:lt mgn?éi?:j"cs of

whenw is equal tow, all examples are satisfied. Thus, even 9 9 '

without the bounded-change condition imposed by laxge 1

the instantaneous change in the weights is small due to the (({Aw) ))=—Ve(w), (94)
minimal change condition and becomes vanishingly small as

w approachesv,. On the other hand, whem is far fromw, 1

the algorithm will keep generating a random walk in the (( (Aw;Aw)) ))= mTij(w), (95

space, ensuring that eventually the system will visit the
neighborhood ofv, and will be attracted to it. To show this \yhere
explicitly, and to evaluate the asymptotic convergence rate

we consider the simplest cake=0. Let us assume that ‘e(w)=((e(w,9))) (96)
U=w-—Wwy (87) and

is small in magnitude and use E&1) to evaluate the aver- AP Y N o~ ~

age of the change in, Tij(w)=2T4;; + A {(View.9)Vje(w.9))), o7
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where as beforé ) and (( )) denote thermal average and (2) Generic threshold-smooth network®r general unre-
average over the examples, respectively. The functiomlizable rules, the optimal convergence rate is

‘e(w,s) is an effective instantaneous error function. For
smooth networks it is given by

A
fg(n)_fmin:ﬁa n—oo, (109

~ 1 )
€(W,9) = e(w,s) N [Vetw. 9 (%8) To achieve this rate\ has to increase as in EGLO3J).
(3) Uniform output noiseln the case of a threshold-
For thresholded smooth networks, Eg0), it is smooth system with a rule that is realizable except for a
corruption of the labels with probability that is independent
‘e(w,9)=e(W,9)[0 (3 \g(w,9)°— 1) of the input, optimal convergence to the underlying teacher
rule is achieved for
+O(1- 3Ag7(W,8)3AGA(W,9], (99
A(n)=\gn?, (105
whereg(w,s) is defined in Eq(A7). Note that in the limit of
largeX, e(w,s) = e(w,s) andT;;=2T¢;, and Egs(94) and
(95) reduce to Eq¥23) and(24) (with T—TN), as expected. A
Comparing Eqs(94) and (95) with Egs.(23) and(24), it is €g(n)—p= oo e (106
seen that for larg®l, keeping\ finite has two effects. First it
modifies the effective potential which determines the deter=|'he above results hold for prefact@[% which are smaller
ministic part of the dynamics, E¢94). Secondly, it modifies  than some system-dependent cutoff value.
the noise term, Eq(97). (4) Realizable rulesin the case of a threshold-smooth
Given the above results, one can derive a COﬂtinUOUS-timgystem |earning a realizable rule, OLGA converges even for
Fokker-Planck equation for the system, by scaling time as finite or zero\ to the teacher weights with an asymptotic
convergence rate which is

which yields

a=n/N. (100

A
Similar to the derivation of the Fokker-Planck equation in €g(n)=—, N—o. (107)
the preceding section, one obtains here

The reason for the remarkable insensitivity to the parameter
i’p(wla,): E V-[VEQ(W)P(w,a)] N is the fact that according to the ypdat_e rule, [-245) the
da A magnitude of the change in the weights is proportional to the
current value ofg. As the system approaches the optimal
+ % 2 3o [Ty (wW)P(W,a)]}. (10D state, errors occur only When the inputs are near the'dgcision
] boundary, implying thay) vanishes as the zero error limit is
approached. Thus our algorithm incorporates a natural tuning
Unfortunately, the second contribution ¢, depends orw of the step size in realizable rules.
and is anisotropic. Therefore whenis finite there is no In addition to the analysis of the time-dependantve
simple expression for the equilibrium distribution even for have also characterized some of the properties of the equi-
large N. Nevertheless, for specific models, the above averlibrium distributions of weights for fixed larga. These
aged dynamics can be reduced to deterministic dynamiproperties have been derived by expansions near a local
equations for a few order parameters which can be solvechinimum of the generalization error. As is well known from

exactly, as will be demonstrated in paper II. general stochastic approximation thept$—19,30,3], such
an analysis is valid for describing the statistics of small fluc-
V1. SUMMARY AND DISCUSSION tuations near the local minima. In addition to these fluctua-

tions there are rare transitions between local minima and

In this paper we derived the asymptotic convergencehese processes which ultimately determine the global shape
properties of OLGA for fixed\ in the limit of A—c and in  of the true equilibrium distribution. Our present analysis
the case of a power-law schedule farWe summarize here does not address the issue of the global convergence of the
the results for the optimal power-law schedules in the differ-algorithm (except for the special case of realizable rules
ent classes of networks in the deterministic limit of OLGA. where the global convergence to the global minimum is

(1) Smooth networkdn the case of smooth systems the guaranteed under fairly general conditipnor the same
optimal behavior is reason our analysis of the time-dependemtoes not tell to
which local minimum of the generalization error the system
will converge.

To guarantee convergence to the global minimumepf
requires in general the addition of noise, namely, the appli-
which is achieved by increasingas cation of OLGA at finite temperature similar to simulated

annealing in optimization problem$37-39. We have
N(N)=2AgN. (103)  shown that in the limit of largé., the finite-temperature al-

A
Eg(n)_fminzﬁ- nN—o (102
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gorithm converges to a Gibbs distribution with the generali-In the discrete output case of Eql10), we write
zation error playing the role of the energy function. exp(—pBel2)=1—e7 where

In conclusion, OLGA is an on-line algorithm that has gen-
eral convergence properties in nonsmooth problems that are
similar to those of the stochastic gradient descent algorithm r=1—exp — B/2). (A3)
for smooth problems. In both cases, for generic unrealizable
rules, if the learning rate is reduced in an appropriate sched-
ule the system converges to a local minimumegf Also in ~ We then writee=0 (— gog(W+ x/\\,s)) and expandy in
both cases, the addition of an appropriate stochastic compgowers of 14/\. Integrating ovex the result is
nent results in a convergence to the global minimum of the
generalization error. Since in the case of smooth problems
(and largen) OLGA reduces to the stochastic gradient de',Bf(w s)zNIn(@ + Be(w,s)
scent algorithnjsee Eq(35)] OLGA can be considered as a ' A '
generalization of the standard stochastic gradient descent al-

gorithm that is applicable to a larger class of problems. Fi- —2¢€(w,9)In[1+7H (VBN /2g(w,9))]
nally, comparing our results for OLGA with those of batch
learning of threshold functions we note that the asymptotic —2[1-€e(w,9)]In[1-7H(/BN/29(W,9))], (A4)

convergence rate of the on-line algorithm has the same

power-law behavior as predicted for batch learning by

Vapnik-ChervonenkigVC) theory[40—43. It is interesting Where

to note that in the case of the output noise OLGA converges

faster than that of batch learning by Gibbs learning, which

yields a reduction in error only as the inverse square root of H(x) = f"“ie_ (1/2) 2
the number of examples, as compared to the inverse power x \2m '
law of Eq. (106) (see also Refd44-47). Although OLGA

can yield the optimal power law of reduction &, other F=exp(Bl2)—1 (A6)
algorithms may yield in specific cases faster reduction of '

errors which will be manifested by a smaller prefactor of theznq

leading power law.

(A5)

~ _lg(w,s)| A7
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) ) ) ) whered vanishes in the large limit. In the smooth network
In this appendix we derive the form 6{w,s) [Eq.(4)]in  case,

the large limit at nonzeroT. We write Eq.(4) as

B\
E) + €g(W) + 5, (A9)

APPENDIX A: THE LIMIT OF LARGE N AT NONZERO T

1 [p?
o~ — ——| — \v/ , 2\\ VZ
gf(w,s)z—lnf dxexp( - §||XH2_ §E(W+X/ ’_)\,s)), B2K< 5 ([IVe(w,9)%) — BV2€4(w)

(A1) In the case of discrete outputs,

. (A10)

wherex=Aw-/\, and expand in powers of {X. For smooth 1
networks, we perform a Taylor expansion«giv,s), thereby o~ — {8(9)IVall))B(B), (A11)
obtaining after a Gaussian integration oxeand expansion BNBNI2

of the logarithmic function,

where

BA o ~
Bf(w,s)=Nln(E + Be(w,s) B(g)=fo dx{In[1—7H(X)]+InN[1+7H(X)]}. (A12)

2
i Bik( BV2e(W,s)— %HV&(W,S)HZ . (A2) Note that in the discrete case the contributionsteomes

from inputs that lie in the decision boundary @f
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Substituting Eq(A9) in the average of Eq47) and(8), where v=1 in the smooth case ang=3 in the threshold-
we obtain smooth case.
Note: In principlef,, provides information about the av-
(AW Y)=— EVE (W)+O0(\"177), (A13) erage connected correlatior_lszk\fv and no_t the full c_orrela-
S tions, see Eq(8). However, in the large limit, the discon-
nected part is of the order af 2, since the typical value of
(Aw) is of the order ofs ~ 1. Therefore the disconnected con-

S 2
i j - s. —1-v
(((awawh )) B\ 9 O ) (Al4) tribution can be neglected.

APPENDIX B: THE LARGE A LIMIT FOR NETWORKS WITH OUTPUT NOISE

In this appendix we outline the derivation of the larngdimit of the one-step dynamics of a threshold-smooth system
learning a rule corrupted by output noise. Our starting point is(&f), which in terms of the scaled weights, EG4), reads

(((Au) )= lim N (= 9(W,9)Vg(W,9) O (— 00g(W,5))O (56G(W,9) + 2I\)) )), (B1)

A—o

where herd( )) is the average over input distribution afd is the average over the output noise distribution. Performing the
average over the noise distribution, we obtain

((Auy)= lim VX (1—p)({—gVgO(—Te0) O (sgn o) g+ v2/N))) + VAP((—aVg®(9e0) O (— Sgr(go) g+ V2IN))),

A—

(B2)
whereg=g(w,s) andgy,=9(Wo,s). Expandingg(w,s) aboutw=w,, we obtainVg~ Vg,, and
~ ~ 1 _
9o~0— KVQO' u. (B3)
Defining
z=1\g (B4)
and
v=Vgo-u, (B5)

we can write
0(—009)0(sgn9o)g+ V2IN)=0(0)O(v—2)O(2)O(—z+\2)+ O(—v)O(—v+2)0(-2)0(z+2),  (B6)

0(909)0 (—sgr(go)g+ V2M)=0(—1v+2)0(2)O(—z+2)+ O (v —2)O(—2)O(z+2). (B7)

Finally, integrating over the variablewe obtain

<<AU>>=—%F(U), (B8)

where

2
F<u>=<1—p><< 5(50)V§00:t . a( O(av—12)+0(0v)O(\2— w)%) >>

2
+p<< 5(50)V§002+10'®(0'v+\/§) —1+®(—av)%) >> (B9)

Note that the average oveiincludes averaging over the randomness afhich depends os throughg, see Eq(B5). Also
note that theu dependence df comes through its dependence ©wn
In a similar fashion we obtain for the second moment of the single-step dynamics
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2
<<AuiAuj>>:KTij(u)v (B10)
where
2 3
(\/?_@)(av—\/z)-i—%@(av)@(\/i—av)) >>

o 3
J§+ %@(—0‘0))>>. (B1D)

Tij(uy=(1-p) << 5(50)3@051‘500

=*1

+ p<< 5(50)&50&,-500; ) O(ov+2)

Higher moments of\u have a similar form. The onlx dependence appears as a prefactor ¢i1/
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