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On-line Gibbs learning. I. General theory
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We study a model of on-line learning, the on-line Gibbs algorithm~OLGA!, which is particularly suitable
for supervised learning of realizable and unrealizable discrete valued functions. The learning algorithm is based
on an on-line energy functionE that balances the need to minimize the instantaneous error against the need to
minimize the change in the weights. The relative importance of these terms inE is determined by a parameter
l, the inverse of which plays a similar role as the learning rate parameters in other on-line learning algorithms.
In the stochastic version of the algorithm, following each presentation of a labeled example the new weights
are chosen from a Gibbs distribution with the on-line energyE and a temperature parameterT. In the zero-
temperature version of OLGA, at each step, the new weights are those that minimize the on-line energyE. The
generalization performance of OLGA is studied analytically in the limit of small learning rate, i.e.,l→`. It is
shown that at finite temperature OLGA converges to an equilibrium Gibbs distribution of weight vectors with
an energy function which is equal to the generalization error function. In its deterministic version OLGA
converges to a local minimum of the generalization error. The rate of convergence is studied for the case in
which the parameterl increases as a power law in time. It is shown that in a generic unrealizable dichotomy,
the asymptotic rate of decrease of the generalization error is proportional to the inverse square root of presented
examples. This rate is similar to that of batch learning. The special cases of learning realizable dichotomies or
dichotomies with output noise are also treated.@S1063-651X~98!07808-8#

PACS number~s!: 87.10.1e
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I. INTRODUCTION

Constructing a general model of on-line learning is
important challenge in the theory of learning and its appli
tions. A plausible definition of the goal of supervised lea
ing from examples is the minimization of the generalizati
error. In this work we focus mostly on supervised learning
discrete valued functions such as dichotomies, which are
tremely useful for decision and classification tasks. A gene
model of batch learning in which the learner has free acc
to a fixed set of examples is based on minimization of
total training error. Indeed, as the size of the training setP,
grows this procedure converges uniformly to the minimu
of the generalization error. In systems with continuou
varying weights, the rate of convergence to this limit follow
a power law@1–6#. For example, in learning Boolean func
tions which can be perfectly realized by the system the g
eralization error decreases to zero as 1/P. In learning a ge-
neric unrealizable Boolean function, the power law is 1/AP
@2–12#. A similar general model for on-line learning of dis
crete valued functions has been lacking. The conventio
on-line algorithm is based on the gradient of the instan
neous error@13–26#. For a sufficiently small learning rate,
converges to a local minimum of the generalization er
~although not necessarily to the global one!. However, this
algorithm is not applicable to learning Boolean functions
other discrete valued functions, as their instantaneous e
cannot be differentiated. Thus even for the simple sing
layer perceptron there has not been an on-line learning a
rithm that guarantees convergence to a minimum genera
tion error for a general unrealizable rule@10,27–29#.

The present paper is the first of two papers that investig
in detail a model of on-line learning, which we call the o
line Gibbs algorithm~OLGA!. The algorithm is specified by
PRE 581063-651X/98/58~2!/2335~13!/$15.00
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two parameters. One is temperatureT which denotes the
level of stochasticity in the algorithm. The second parame
denoted asl characterizes the size of the changes made
each step. The inverse ofl is analogous to the learning rat
constant in conventional on-line learning algorithms. OLG
is applicable to learning general functions, including smo
and discrete valued functions. In this paper~paper I! we de-
fine the algorithm and study analytically its general prop
ties, using methods of the theory of stochastic proces
@15–19,30,31#. In the following paper~paper II! we apply
OLGA to specific systems and analyze its behavior us
mean-field theory as well as numerical simulations.

The outline of paper I is as follows. In Sec. II we defin
the algorithm. In Sec. III the general properties of the alg
rithm at nonzeroT are investigated. This is done for the lim
of large l, namely, vanishing learning rate. In Sec. IV th
properties of OLGA in the deterministic limit~i.e., T50!,
and largel, are derived. In Sec. V the thermodynamic lim
of OLGA ~in which the number of weights approaches infi
ity! is investigated. The results are summarized and
cussed in Sec. VI.

A preliminary version of the work has been presented
Refs.@32# and @33#.

II. THE ON-LINE GIBBS ALGORITHM

A. The algorithm

We consider a learning system defined by a funct
s(s;w), where s is the input vector ands is the output,
which for simplicity is taken as a scalar. The target task i
real valued functions0(s). At each presentation of an ex
ample, numbered by the integern, the system is given an
input vectorsn and the desired outputs0

n5s0(sn). The in-
2335 © 1998 The American Physical Society
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2336 PRE 58H. SOMPOLINSKY AND J. W. KIM
puts are drawn at random from a distributionDs. For each
example there is an error functione~w;s! which measures the
dissimilarity between the system outputs and the desired
values0.

We denote byw the current weight vector, i.e., th
weights evaluated aftern21 steps, and byw8 the new
weight vector, which is evaluated following the presentat
of the nth examples5sn. Givenw ands the update rule for
evaluatingw8 is based on the energy function

E~w8uw,s!5e~w8;s!1
l

2
iw82wi2. ~1!

It is an energy function in the space of the new weightsw8
which depends parametrically onw ands. The first term inE
represents the cost incurred by the error due to the new
ample. Minimizing this instantaneous error is not a go
strategy as it will lead to large changes in the values of
weights which will quickly erase past knowledge stored
the current weights. In order to avoid such changes we
the last term which prevents the system from making
changes in the weights at each step. ThusE represents a
compromise between the need to satisfy the new exam
and the need to minimize the changes in the weights at e
step.

OLGA is a stochastic update rule. Given the curre
weights and the new randomly sampled example, the p
ability that the new weight vector isw8 is given by

P~w8uw,s!5
1

Z~w,s!
expS 2

b

2
E~w8uw,s! D , ~2!

which we callthe on-line Gibbs distribution. The normaliza-
tion functionZ can be written as

Z~w,s!5expS 2
b

2
f ~w,s! D , ~3!

where

b

2
f ~w,s!52 lnE dw8expS 2

bl

4
iw82wi22

b

2
e~w8,s! D .

~4!

Note that f depends onw and the new example. The fu
process can be described as a Markov process~for a fixed
sequence of examples$s%!,

P~w8,n;$s%!5E dw P~w8uw,s!P~w,n21;$s%!, ~5!

whereP(w,n;$s%) is the probability density of the weights a
time stepn which depends on the sequence ofn examples
that were presented so far.

The algorithm depends on two parameters,T andl. The
temperatureT specifies the level of stochasticity in the alg
rithm. In the limit of zero temperature the algorithm reduc
to choosing as the new weight vector one that minimizesE.
The parameterl determines the size of the change in t
weights at each presentation.
n
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The free energy, Eq.~4!, serves as a generating functio
for the moments of the change in the weights at each s
Defining

Dw5w82w, ~6!

it is straightforward to see that

^Dw&52
1

l

]

]w
f ~w,s!. ~7!

The fluctuations inDw obey

^DwiDwj&C5
2

bl2S 2]2

]wi]wj

f ~w,s!1ld i j D , ~8!

where ^DwiDwj&C[^DwiDwj&2^Dwi&^Dwj& and ^ & is a
thermal average, i.e., average overw8 using the on-line
Gibbs distributionP(w8uw,s), Eq. ~2!. In a similar manner,
higher-order connected correlations ofDw can be derived by
higher-order derivatives off (w,s).

B. System architecture

We will consider in this work the following classes o
network architectures.

Smooth networks. This class is defined by the condition
that the error functione~w,s! is twice differentiable with re-
spect tow. In the context of multilayered perceptrons it r
quires that all the neurons are smooth sigmoidal function
their inputs and that the error function is a smooth funct
of the output of the system. Of course a network with thre
old units does not fall into this class.

Networks with discrete output. In this class the output o
the system is of the form

s~w,s!5F„$gk~w,s!%…. ~9!

The functionF is a function of a set of variables$gk% which
has discontinuities atgk50. The variablesgk(w,s) are as-
sumed to be differentiable functions of the weights. Fina
it is assumed that there is a finite density of inputs at
decision boundaries of the system. These boundaries are
fined by the vectorss that obeygk(w,s)50.

A simple case is thethreshold-smooth network, the output
of which is of the form

s~w,s!5sgn@g~w,s!#, ~10!

whereg is a smooth function ofw. An example is the single-
layer perceptron@34#

s~w;s!5sgn~w•s!, ~11!

where boths and w are N-component vectors. Hereg is a
linear function of the weights. Another example of
threshold-smooth network is a multilayer network with
thresholdoutput unit and sigmoidal hidden units,

s~$wl%,s!5sgnS (
l 51

M

Jl tanh~wl•s!D , ~12!
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PRE 58 2337ON-LINE GIBBS LEARNING. I. GENERAL THEORY
wherewl is the weight vector of thel th hidden unit andJl is
the weight connecting thel th hidden unit to the output unit
Heregl(w,s)5tanh(wl•s).

Another important case of a threshold-smooth network
a two-layer committee machine@35#. Here

s~$wk%,s!5sgnS (
k51

M

sgn~wk•s!D , ~13!

wherewk is the weight vector of thekth perceptron ‘‘com-
mittee member.’’ Heregk(w,s)5sgn(wk•s). An additional
example is a winner-takes-all~WTA! network which is ap-
propriate for classification tasks. In this network, the out
takes integer valuesl 51, . . . ,K, according to

s~$wl%,s!5argmaxl~wl•s!. ~14!

C. OLGA at T50

At T50 our algorithm reduces to finding at each step
global minimum of the on-line energy, Eq.~1!, given the
current weights and the new example. We now describe
implementation of the zero-temperature algorithm for
two classes of problems defined above.

Smooth networks. In this case, we may attempt to dete
minew8 by locally minimizingE, Eq. ~1!, i.e., by solving for
w8 the equation

w85w2
1

l
¹e~w8;s!, ~15!

where¹ is gradient with respect tow8. In the general non-
linear case and moderate values ofl, solving these equation
may be difficult. In addition,E may have more than one loca
minimum. However, in general we are interested in the lim
of large l, in which caseE is expected to have a uniqu
minimum which can be evaluated by an expansion in 1/l, as
will be shown in Sec. IV A.

Networks with discrete output. The novelty of our algo-
rithm lies mainly in learning nonsmooth problems, such
networks with threshold neurons. As an example we w
focus on learning Boolean functions wheres, s0, and
e(w,s) take on$0,1% values. In this case, minimizingE im-
plies that the current weightw is changed only ifw does not
satisfy the new example and in addition there is a wei
vector sufficiently close tow that does satisfy the new ex
ample. Specifically, the algorithm consists of three pr
ciples.

(1) Error correction. If e~w;s!50 then the minimum ofE
is clearly w85w, hence no change is made. Furthermo
whene~w;s!51, and a move is made, it will always be to
new weight vector that does satisfy the new examp
Whether such a move is performed depends on the two
lowing rules.

(2) Minimal change. If e~w;s!51 then one has to searc
for the nearestvector tow that satisfiesthe new example.

(3) Bounded change. This new vector is chosen asw8
provided that it lies within a hypersphere centered onw with
radiusA2/l, i.e.,

iw82wi,A2/l. ~16!
s
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Otherwise,w85w. See Fig. 1. In general, this computatio
may be intensive. However, as we will demonstrate later
many cases one can write explicitly relatively simple upd
rules that implement the above algorithm. First, we der
some general properties of the algorithm.

D. Generalization error

As in other on-line supervised learning algorithms t
performance of OLGA is measured by the resultant gener
zation error. The generalization functioneg(w) is defined as

eg~w!5^^e~w;s!&&, ~17!

where^^ && denotes average with respect to the input dis
bution Ds. To measure the average generalization error
the learning algorithm we define the probability distributio

P~w,n!5^^P~w,n;$s%!&&, ~18!

where the average is over all possible sequences ofn ex-
amples. The equilibrium weight distribution is

P`~w!5 lim
n→`

P~w,n!. ~19!

The ~average! generalization error at stepn is defined as

eg~n!5E dwP~w,n!eg~w!. ~20!

Finally, the equilibrium generalization error is defined as t
long time limit of the average generalization error

e`5 lim
n→`

eg~n!5E dwP`~w!eg~w!. ~21!

FIG. 1. Schematic illustration of OLGA update rule for a syste
with binary error. The solid line denotes the hypersphere in wei
space centered on the current weight vectorw with a radiusA2/l.
Only if the nearest weight vectorw8 which satisfies the new ex
ample lies within this hypersphere is an update~w→w8! made. The
dashed line denotes the hypersphere on whichw8 lies.
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III. GENERAL RESULTS FOR LARGE l AT NONZERO T

In this section we analyze the general properties of OL
in the limit l→` while the temperature is kept at a fixe
positive value. In Appendix A we show that in this limit th
leading terms in the on-line free energy, Eq.~4!, are of the
form

f ~w,s!5
N

b
lnS lb

4p D1e~w,s!1d~w,s!, ~22!

whered~w,s! vanishes in the largel limit. Substituting Eq.
~22! in Eqs.~7! and ~8! and averaging overs, we obtain

^^^Dw&&&52
1

l
¹eg~w!1O~l212n!, ~23!

^^^DwiDwj&&&5
2

bl
d i j 1O~l212n!, ~24!

where n51 in the smooth case andn51
2 in the threshold-

smooth case. See Appendix A.
Equations~23! and ~24! are our fundamental results fo

the behavior of the algorithm at largel and finiteT. These
equations imply that the weight vector executes a rand
walk with a step size of the order of 1/Abl. This thermal
noise is mostly due to the isotropic quadratic term inE. The
d

u

th
ta
m

mean drift of the weight vector is of the order of 1/l. It
consists of a gradient descent with the generalization erro
the potential. These results can be cast in the following s
chastic equations:

Dwn52
1

l
¹eg~w!1zn, ~25!

wherezn is Gaussian uncorrelated noise, with zero mean

^zi
nzj

m&5
2T

l
dnmd i j . ~26!

We now consider the temporal evolution of theaverage
weight distribution, Eq.~18!. This distribution can also be
written as

P~w,n!5Š^d~w2wn212Dwn!&Dw‹n21 , ~27!

where^ &Dw denotes thermal and quenched average over
increments at then step, i.e., integrating with the distributio
P(w1Dwnuw)5^^P(w1Dwnuw,s)&&. The averagê¯&n21
denotes average over all possible weight vectors at thn
21 step, i.e., integrating with the distributionP(wn21,n
21)5^^P(wn21,n21;$s%)&&. Expanding the right hand
side of the above equation in powers ofDwn and using the
results of the preceding paragraph, we obtain
DP~w,n![P~w,n!2P~w,n21! ~28!

5
2

bl K S 1

2
b„¹eg~wn21!…•¹1

1

2
¹2D d~w2wn21!L

n21

1O~l212n!. ~29!
ly
red

dule
l
ti-

the
ic

ot

-

A proper largel limit is obtained by defining a scale
time variable

t5n/l ~30!

and constructing the continuous-time limit by

P~w,t!5 lim
l→`

P~w,lt!. ~31!

Using the above result we obtain thatP(w,t) obeys the fol-
lowing Fokker-Planck equation@15,19,31#:

]

]t
P~w,t!5¹•@¹eg~w!P~w,t!#1T¹2P~w,t!. ~32!

This result implies in particular that the stationary distrib
tion of the weights is

P`~w!5Z21exp@2eg~w!/T#. ~33!

Thus in the largel limit at finite T our algorithm converges
to an equilibrium state which is a Gibbs distribution wi
eg(w) as the energy. This is analogous to the stationary s
of the statistical mechanical batch learning in thehigh-
temperature limit@1,2#.
-

te

Our result implies that OLGA converges at sufficient
long time to a distribution which becomes sharply cente
at the desired weight vector, i.e., the global minimum ofeg ,
in the limit that T→0 after taking the limitl→`. To actually
reach this target, one has to specify an appropriate sche
for making l and 1/T sufficiently large. This schedule wil
determine therate of convergence of the system to the op
mal performance. In general, to guarantee convergence to
global minimumT has to be changed in a slow logarithm
schedule

T~n!5
T0

ln~n!
. ~34!

In many cases, power-law rates are sufficient. We will n
discuss further the issue of schedulingl and T for the sto-
chastic OLGA.

IV. RESULTS FOR LARGE l AT T50

A. Smooth networks

The largel limit of OLGA in the case of smooth net
works can be derived by expanding Eq.~15! in powers of
w82w. The leading order can be evaluated by substitutingw
in the argument ofe, yielding
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w85w2
1

l
¹e~w;s!. ~35!

Thus for smooth problems and largel our algorithm reduces
at zero temperature to the conventional stochastic grad
descent algorithm with a small learning rate, 1/l. Viewing
the stochastic gradient descent algorithm as minimizing
instantaneous cost function has been proposed by Kiv
and Warmuth@36# for linear systems.

From Eq.~35! the low-order statistics of the single ste
can be obtained,

^^^Dw&&&52
1

l
¹eg~w!1O~l22!, ~36!

^^^DwiDwj&&&5
2

l2 Ti j ~w!1O~l23!. ~37!

The diffusion matrixis

Ti j ~w!5 1
2 ^^] ie~w,s!] je~w,s!&&, ~38!

where] i[]/]wi . The higher-order moments are of a ma
nitude that is higher order in 1/l and can be neglected.

Using methods similar to that of the preceding section o
can define a scaled time variable

t5n/l ~39!

and derive a continuous time Fokker-Planck equation for
weight distribution,

]

]t
P~w,t!5¹•@¹eg~w!P~w,t!#

1
1

l (
i j

] i] j@Ti j ~w!P~w,t!#. ~40!

These results are similar to the standard on-line gradient
scent algorithm in the limit of zero learning rate. The abo
equation implies that as long as¹eg(w) is not small, the
diffusion term which is of the order of 1/l can be neglected
and the evolution can be described as a deterministic gr
ent descent towards a local minimum ofeg(w), to be de-
noted byw* . Near the local minimum the drifting ‘‘force’’ is
small and is comparable to the diffusion term. To descr
the dynamics near the local minimum we write

u5~w2w* !Al. ~41!

The distribution of these scaled weights obeys

]

]t
P~u,t!5Hi j ] i@ujP~u,t!#1(

i j
Ti j ] i] jP~u,t!. ~42!
nt

n
n

-

e

e

e-
e

i-

e

The matrix Hi j is the Hessian ofeg(w), namely, Hi j
5] i] jeg(w* ). The matrixTi j is the diffusion matrix evalu-
ated atw* . Thus the equilibrium distribution ofw has a form
of a Gaussian peaked at the local minimum ofeg , i.e., atw* ,
with a width of the order 1/Al. Finally, the equilibrium gen-
eralization error is

e`5emin1
1

2l (
i j

Hi j ^uiuj&, ~43!

where the average overu is with respect to the equilibrium
distributionP`(u).

B. Generic threshold-smooth networks

Due to the threshold operation of the network’s output
largel limit of the deterministic algorithm is more compli
cated than the previous case. For fixed inputs, if s0g(w,s)
,0, the minimal change in weightDw5w82w that will cor-
rect the error is such that

05g~w8,s!'g~w,s!1Dw•¹g~w,s!, ~44!

where we have kept only the first-order terms iniDwi since
the magnitude of the step will be small in the largel limit,
and ¹ stands for gradient with respect tow unless stated
otherwise. Minimizing with respect toDw yields

Dw52g~w,s!¹g~w,s!/i¹g~w,s!i2. ~45!

Incorporating the bounded change condition, the above
date is executed if and only if

0,2s0g~w,s!/i¹g~w,s!i,A2/l. ~46!

Otherwisew85w.
It is convenient to introduce the notation

g̃~w,s![g~w,s!/i¹g~w,s!i . ~47!

Note that in the largel limit whenever there is a change i
the weights,

¹g̃'¹g~w,s!/i¹g~w,s!i ~48!

since a change is made only ifg(w,s)'0. Thus the update
rule in the largel limit is

Dw'2g̃~w,s!¹g̃~w,s! ~49!

provided that

0,2s0g̃~w,s!,A2/l, ~50!

see Fig. 2. Therefore the average ofDw in a single step is
^^Dw&&5 lim
l→`

^^2g̃~w,s!¹g̃~w,s!Q„2s0g̃~w,s!…Q„s0g̃~w,s!1A2/l…&&, ~51!
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2340 PRE 58H. SOMPOLINSKY AND J. W. KIM
where as beforê^ && is the average over input distribution
Taking into account only these inputs and assuming that
input distributionP0(s) is smooth and nonvanishing at dec
sion boundary, we decomposes as s5s'1si where
g(w,s')50 and si is orthogonal to the decision bounda
and decompose the average overs as an average oversi and
s' , separately. SinceiDwi for fixed w is O(1/Al), the in-
puts which satisfy the bounded change condition lie in
narrow band which isO(1/Al) from the decision boundary
g(w,s)50. See Fig. 3. Thus

^^Dw&&'E
0

A2/l
dzẑ ^s0~s'!¹g̃~w,s'!&&P0~s'! ~52!

from which we obtain

^^Dw&&'
1

l
^^s0¹g̃~w,s'!&&P0~s'! ~53!

FIG. 3. Average ofDw over the input space for fixedw. Solid
line and dotted line show the decision boundaries of the stud
@g(w,s)50#, and the teacher@g(w0 ,s)50#, respectively. The
shaded regions denote the inputs that induce changes in the we
thus contributing to the average ofDw, see Eqs.~51! and ~52!.

FIG. 2. Schematic illustration of OLGA in the case of largel.
Solid lines show surfaces in weight space defined by constant
ues ofg(w,s). The vectors is the input of the new example. Whe
an update is made the new weight vector isw85w1Dw whereDw
is orthogonal to the surfaceg(w,s) and its magnitude is such tha
w8 lies on the surfaceg(w8,s)50, see Eq.~49!.
e

e

5
1

l
^^s0d„g~w,s!…¹g~w,s!&&. ~54!

Since

¹eg~w!5¹^^Q„2s0g~w,s!…&& ~55!

5^^d„g~w,s!…@2s0¹g~w,s!#&&, ~56!

we obtain

^^Dw&&52
1

l
¹eg~w! ~57!

in the largel limit. In a similar fashion we obtain

^^DwiDwj&&5
2

l3/2
Ti j ~w!, ~58!

where

Ti j ~w!5
A2

3
^^d„g~w,s!…] ig~w,s!] jg~w,s!/i¹g~w,s!i&&.

~59!

Finally, it can be shown that the leading correction to E
~57! is of the orderO(1/l3/2). These results imply that the
distribution ofw obeys a Fokker-Planck equation in terms
scaled time

t5n/l, ~60!

]

]t
P~w,t!5¹•@¹eg~w!P~w,t!#1

1

Al
] i] j@Ti j ~w!P~w,t!#.

~61!

Thus, near a local minimum, the proper scale of the fluct
tions of the weights is

u5~w2w* !l1/4 ~62!

and the distribution ofu obeys a Fokker-Planck equation o
the form of Eq.~42!. In particular the equilibrium distribu-
tion of w is Gaussian with a meanw* and a width of the
order idwi of the order 1/l1/4. Thus

e`'emin1O~dw!2'emin1OS 1

Al
D . ~63!

C. Threshold-smooth networks with output noise

In this section we consider the case of a threshold netw
that learns a rule generated by a teacher of the same a
tecture as the learning system except for an output nois
the teacher’s labels. Thus the labels provided by the tea
are of the form

s0~s!5H 1sgn@g~w0 ,s!# with probability 12p

2sgn@g~w0 ,s!# with probability p,

where 0<p,1/2 is the probability of error in the label pro
vided by the teacher. This form of noise is special in tha

nt

hts,

l-
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generates errors with a probability which is independen
the inputs. Other than this noise the rule is realizable by
student. Although Eq.~51! holds also for this case, the evalu
ation of the largel limit in this equation which was per
formed in the preceding paragraph is not valid here. T
reason for this is the fact that the density of inputs that g
erate errors~other than those generated by the output no!
is itself vanishing asw→w0. Therefore forw close tow0
both s0 and g change signs for the same inputs. Hen
integrals over the decision boundary, such as in Eqs.~52!
and ~54!, are meaningless atw5w0.

In Appendix B we outline the derivation of the largel
limit in the case of output noise near the global minimu
w5w0. We find that if we scale the weights as

u5~w2w0!Al, ~64!

then the equations of the moments ofu are of the form

^^Dui&&52
1

Al
Fi~u!, ~65!

^^DuiDuj&&5
2

Al
Ti j ~u! ~66!

@see Appendix B for expressions forFi(u) and Ti j (u)#.
Similar equations~with the same prefactor 1/Al! hold for
higher-order moments. This form implies that one can w
down a continuous-time master equation forP(u,t),

]

]t
P~u,t!5E Du8T~u8uu!P~u8,t!, ~67!

with

t5
n

Al
~68!

and T(u8uu) is a time-independent transition matrix. Th
master equation does not have al dependence. It converge
in general to a non-Gaussian equilibrium distributionP`(u).
Thus the fluctuations ofw aboutw0 are of the order

iw2w0i5OS 1

Al
D ~69!

and

e`'emin1O~ idwi !5p1OS 1

Al
D ~70!

@see Eq.~91! below#.

D. Time-dependentl

Until now we considered the case of fixed and largel and
derived the dependence of the equilibrium average gene
zation error onl. Now we consider thetime dependenceof
f
e

e
-

,

e

li-

the generalization error in the case wherel is chosen to grow
with time. We will consider here only the case of a fixe
power-law schedule forl,

l~n!5l0nn. ~71!

The effect of such a schedule has been discussed in d
@10,27–29#, in the context of time-dependent learning rat
of on-line learning. Essentially, the continuous-time mas
~or Fokker-Planck! equation forP(w,t) for fixed largel can
be mapped into the corresponding equation for the cas
time-dependentl by substitutingl~t! for l providedl does
not increase too fast. The maximum allowed rate of incre
is such that the scaled timet is constant. We now summariz
briefly the results for the power-law schedule ofl in the
cases analyzed in the previous paragraphs.

(i) Smooth networks. According to the scaling of time, Eq
~39!, the power law must obey

0<n<1. ~72!

In the case of less than optimal schedule, i.e.,n,1, there
are no restrictions on the prefactorl0, and the scaling of the
fluctuations in the weights with time is

w2w* 5OS 1

AnnD . ~73!

The average generalization error approachesemin as

eg~n!'emin1OS 1

nnD , ~74!

see Eqs.~41! and ~43!.
The optimal schedule is

l~n!5l0n, ~75!

wherel0 must be less than a system-dependentlC . In this
case

w2w* 5OS 1

An
D , ~76!

eg~n!'emin1OS 1

nD . ~77!

(ii) Generic threshold-smooth networks. According to Eq.
~60! the scaling of time withl is, in this case, the same as
the smooth networks. Hence, the allowed range ofn is the
same as Eq.~72!. According to Eq.~62!, the scale of the
fluctuations in the weights is different,

w2w* 5OS 1

nn/4D ~78!

and similarly,

eg~n!'emin1OS 1

AnnD . ~79!

The optimal behavior is

l~n!5l0n, ~80!
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w2w* 5OS 1

n1/4D , ~81!

eg~n!'emin1OS 1

An
D . ~82!

(iii) Threshold network with output noise. In this case the
scaling of time is different, as seen from Eq.~68!, and the
corresponding range ofn is

0<n<2. ~83!

On the other hand, the scale of the fluctuations is the sam
that of smooth networks, as seen by Eq.~64!. If the power
law is less than optimal, i.e.,n,2, then for all positive values
of the coefficientl0 the generalization error scales as

eg~n!'emin1OS 1

AnnD . ~84!

The optimal behavior is obtained for

l5l0n2, l0,lC ~85!

in which case

eg~n!'emin1OS 1

nD . ~86!

For optimal schedules ofl, l0 has to be smaller than
system-dependent cutofflC . SincelC depends on unknown
target rule and input distribution in general, the upper bou
of lC is not known to the learner. Ifl0.lC , theneg con-
verges toemin with suboptimal rate in the generic case andeg
remains finite in the pure output noise case@33#.

E. Realizable rules atT50 and l50

The problem of learning a realizable rule in a thresh
network is a special case of the preceding section with z
noise (p50). The main difference between the noisy ca
and the noiseless case is that in the case of a realizable
OLGA converges asymptotically to the teacher weight vec
even for small values ofl. The reason for this is that ifw is
close to the teacher vector,w0, then the minimal change tha
corrects the instantaneous error is small. This is beca
whenw is equal tow0 all examples are satisfied. Thus, ev
without the bounded-change condition imposed by largl
the instantaneous change in the weights is small due to
minimal change condition and becomes vanishingly smal
w approachesw0. On the other hand, whenw is far fromw0
the algorithm will keep generating a random walk in thew
space, ensuring that eventually the system will visit
neighborhood ofw0 and will be attracted to it. To show thi
explicitly, and to evaluate the asymptotic convergence r
we consider the simplest casel50. Let us assume that

u[w2w0 ~87!

is small in magnitude and use Eq.~51! to evaluate the aver
age of the change inu,
as

d

ro
e
ule
r

se

he
s

e

te

^^Du&&

'^^2g̃~w01u,s!¹g̃~w01u,s!Q„2s0g̃~w01u,s!…&&.

~88!

Sinces0g̃(w0 ,s) is positive for alls, nonzero contribution to
Du comes only from inputs near the decision boundary
w0, namely, for those inputs for whichg̃(w0 ,s) is of the
order of¹g̃•u. Integrating over this region in the input spac
we obtain in the limit of smalliui,

^^Du&&'2KK d~g!¹g
~¹g•u!2

i¹gi2 LL , ~89!

whereg is evaluated atw0. In this equation in the largen
limit, the solution of this difference equation is of the form

u~n!'
u0

n
. ~90!

Finally, in the realizable caseeg is of the form

eg~w01u!'^^d~g!u¹g•uu&&, ~91!

from which we conclude that

eg~n!5OS 1

nD . ~92!

V. THE THERMODYNAMIC LIMIT

Another interesting limit where the behavior of the alg
rithm can be analyzed is the case where the numbe
weightsN is large, in which case an appropriate thermod
namic limit can be defined. We will use scales of weigh
such that the componentswi are of order unity~i.e., their
magnitude remains finite asN goes to`!. In addition, the
error functione~w,s! is of order 1. A nontrivial thermody-
namic limit requires that

b5
N

T̃
, ~93!

whereT̃ is of order 1. This guarantees that the on-line fr
energy is extensive.

It can be shown that in the largeN limit the statistics of
Dw is again Gaussian with the following moments:

^^ ^Dw& &&52
1

l
¹ẽ~w!, ~94!

^^ ^DwiDwj& &&5
1

Nl
Ti j ~w!, ~95!

where

ẽ~w!5^^ẽ~w,s!&& ~96!

and

Ti j ~w!52T̃d i j 1
N

l
^^¹i ẽ~w,s!¹j ẽ~w,s!&&, ~97!
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where as beforê & and ^^ && denote thermal average an
average over the examples, respectively. The func
ẽ(w,s) is an effective instantaneous error function. F
smooth networks it is given by

ẽ~w,s!5e~w,s!2
1

l
i¹e~w,s!i2. ~98!

For thresholded smooth networks, Eq.~10!, it is

ẽ~w,s!5e~w,s!@Q„

1
2 lg̃~w,s!221…

1Q„12 1
2 lg̃2~w,s!…1

2 lg̃2~w,s!#, ~99!

whereg̃(w,s) is defined in Eq.~A7!. Note that in the limit of
largel, ẽ(w,s)5e(w,s) andTi j 52T̃d i j , and Eqs.~94! and
~95! reduce to Eqs.~23! and~24! ~with T→T̃N!, as expected
Comparing Eqs.~94! and ~95! with Eqs.~23! and ~24!, it is
seen that for largeN, keepingl finite has two effects. First it
modifies the effective potential which determines the de
ministic part of the dynamics, Eq.~94!. Secondly, it modifies
the noise term, Eq.~97!.

Given the above results, one can derive a continuous-t
Fokker-Planck equation for the system, by scaling time a

a5n/N. ~100!

Similar to the derivation of the Fokker-Planck equation
the preceding section, one obtains here

]

]a
P~w,a!5

1

lH ¹•@¹ẽg~w!P~w,a!#

1
1

2 (
i j

] i] j@Ti j ~w!P~w,a!#J . ~101!

Unfortunately, the second contribution toTi j depends onw
and is anisotropic. Therefore whenl is finite there is no
simple expression for the equilibrium distribution even f
large N. Nevertheless, for specific models, the above av
aged dynamics can be reduced to deterministic dyna
equations for a few order parameters which can be so
exactly, as will be demonstrated in paper II.

VI. SUMMARY AND DISCUSSION

In this paper we derived the asymptotic convergen
properties of OLGA for fixedl in the limit of l→` and in
the case of a power-law schedule forl. We summarize here
the results for the optimal power-law schedules in the diff
ent classes of networks in the deterministic limit of OLGA

(1) Smooth networks. In the case of smooth systems th
optimal behavior is

eg~n!2emin5
A

n
, n→` ~102!

which is achieved by increasingl as

l~n!5l0n. ~103!
n
r

r-

e

r-
ic
d

e

-

(2) Generic threshold-smooth networks. For general unre-
alizable rules, the optimal convergence rate is

eg~n!2emin5
A

An
, n→`. ~104!

To achieve this rate,l has to increase as in Eq.~103!.
(3) Uniform output noise. In the case of a threshold

smooth system with a rule that is realizable except fo
corruption of the labels with probability that is independe
of the input, optimal convergence to the underlying teac
rule is achieved for

l~n!5l0n2, ~105!

which yields

eg~n!2p5
A

n
, n→`. ~106!

The above results hold for prefactorsl0 which are smaller
than some system-dependent cutoff value.

(4) Realizable rules. In the case of a threshold-smoo
system learning a realizable rule, OLGA converges even
finite or zerol to the teacher weights with an asymptot
convergence rate which is

eg~n!5
A

n
, n→`. ~107!

The reason for the remarkable insensitivity to the param
l is the fact that according to the update rule, Eq.~45!, the
magnitude of the change in the weights is proportional to
current value ofg. As the system approaches the optim
state, errors occur only when the inputs are near the deci
boundary, implying thatg vanishes as the zero error limit i
approached. Thus our algorithm incorporates a natural tun
of the step size in realizable rules.

In addition to the analysis of the time-dependentl we
have also characterized some of the properties of the e
librium distributions of weights for fixed largel. These
properties have been derived by expansions near a l
minimum of the generalization error. As is well known fro
general stochastic approximation theory@15–19,30,31#, such
an analysis is valid for describing the statistics of small flu
tuations near the local minima. In addition to these fluctu
tions there are rare transitions between local minima
these processes which ultimately determine the global sh
of the true equilibrium distribution. Our present analys
does not address the issue of the global convergence o
algorithm ~except for the special case of realizable ru
where the global convergence to the global minimum
guaranteed under fairly general conditions!. For the same
reason our analysis of the time-dependentl does not tell to
which local minimum of the generalization error the syste
will converge.

To guarantee convergence to the global minimum ofeg
requires in general the addition of noise, namely, the ap
cation of OLGA at finite temperature similar to simulate
annealing in optimization problems@37–39#. We have
shown that in the limit of largel, the finite-temperature al
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gorithm converges to a Gibbs distribution with the gener
zation error playing the role of the energy function.

In conclusion, OLGA is an on-line algorithm that has ge
eral convergence properties in nonsmooth problems tha
similar to those of the stochastic gradient descent algori
for smooth problems. In both cases, for generic unrealiza
rules, if the learning rate is reduced in an appropriate sch
ule the system converges to a local minimum ofeg . Also in
both cases, the addition of an appropriate stochastic com
nent results in a convergence to the global minimum of
generalization error. Since in the case of smooth proble
~and largel! OLGA reduces to the stochastic gradient d
scent algorithm@see Eq.~35!# OLGA can be considered as
generalization of the standard stochastic gradient descen
gorithm that is applicable to a larger class of problems.
nally, comparing our results for OLGA with those of batc
learning of threshold functions we note that the asympto
convergence rate of the on-line algorithm has the sa
power-law behavior as predicted for batch learning
Vapnik-Chervonenkis~VC! theory @40–43#. It is interesting
to note that in the case of the output noise OLGA conver
faster than that of batch learning by Gibbs learning, wh
yields a reduction in error only as the inverse square roo
the number of examples, as compared to the inverse po
law of Eq. ~106! ~see also Refs.@44–47#!. Although OLGA
can yield the optimal power law of reduction ineg , other
algorithms may yield in specific cases faster reduction
errors which will be manifested by a smaller prefactor of t
leading power law.
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APPENDIX A: THE LIMIT OF LARGE l AT NONZERO T

In this appendix we derive the form off (w,s) @Eq. ~4!# in
the largel limit at nonzeroT. We write Eq.~4! as

b

2
f ~w,s!52 lnE dxexpS 2

b

4
ixi22

b

2
e~w1x/Al,s! D ,

~A1!

wherex5DwAl, and expand in powers of 1/Al. For smooth
networks, we perform a Taylor expansion ofe~w,s!, thereby
obtaining after a Gaussian integration overx and expansion
of the logarithmic function,

b f ~w,s!5NlnS bl

4p D1be~w,s!

1
1

blS b¹2e~w,s!2
b2

2
i¹e~w,s!i2D . ~A2!
-

-
re

m
le
d-

o-
e
s

-

al-
i-

c
e

y

s
h
of
er

f

c-

-
.
e

In the discrete output case of Eq.~10!, we write
exp(2be/2)512et where

t512exp~2b/2!. ~A3!

We then writee5Q„2s0g(w1x/Al,s…… and expandg in
powers of 1/Al. Integrating overx the result is

b f ~w,s!5NlnS bl

4p D1be~w,s!

22e~w,s!ln@11 t̃H„Abl/2g̃~w,s!…#

22@12e~w,s!# ln@12tH„Abl/2g̃~w,s!…#, ~A4!

where

H~x!5E
x

` dt

A2p
e2 ~1/2! t2, ~A5!

t̃5exp~b/2!21, ~A6!

and

g̃~w,s!5
ug~w,s!u

i¹g~w,s!i
. ~A7!

Thus in both cases the quenched averaged free energy
fined as

f av~w!5^^ f ~w,s!&&, ~A8!

has the form

f av~w!5
N

b
lnS bl

4p D1eg~w!1d, ~A9!

whered vanishes in the largel limit. In the smooth network
case,

d'2
1

b2l
S b2

2
^^i¹e~w,s!i2&&2b¹2eg~w!D . ~A10!

In the case of discrete outputs,

d'2
1

bAbl/2
^^d~g!i¹gi&&B~b!, ~A11!

where

B~b!5E
0

`

dx$ ln@12tH~x!#1 ln@11 t̃H~x!#%. ~A12!

Note that in the discrete case the contribution tod comes
from inputs that lie in the decision boundary ofg.
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Substituting Eq.~A9! in the average of Eqs.~7! and ~8!,
we obtain

^^ ^Dw& &&52
1

l
¹eg~w!1O~l212n!, ~A13!

^^ ^DwiDwj& &&5
2

bl
d i j 1O~l212n!, ~A14!
where n51 in the smooth case andn51
2 in the threshold-

smooth case.
Note: In principlef av provides information about the av

erage connected correlations ofDw and not the full correla-
tions, see Eq.~8!. However, in the largel limit, the discon-
nected part is of the order ofl22 , since the typical value of
^Dw& is of the order ofl21. Therefore the disconnected con
tribution can be neglected.
em

the
APPENDIX B: THE LARGE l LIMIT FOR NETWORKS WITH OUTPUT NOISE

In this appendix we outline the derivation of the largel limit of the one-step dynamics of a threshold-smooth syst
learning a rule corrupted by output noise. Our starting point is Eq.~51!, which in terms of the scaled weights, Eq.~64!, reads

^^ ^Du& &&5 lim
l→`

Al^^ ^2g̃~w,s!¹g̃~w,s!Q„2s0g̃~w,s!…Q„s0g̃~w,s!1A2/l…& &&, ~B1!

where herê^ && is the average over input distribution and^ & is the average over the output noise distribution. Performing
average over the noise distribution, we obtain

^^Du&&5 lim
l→`

Al~12p!^^2g̃¹g̃Q~2g̃0g̃!Q„sgn~ g̃0!g̃1A2/l…&&1Alp^^2g̃¹g̃Q~ g̃0g̃!Q„2sgn~ g̃0!g̃1A2/l…&&,

~B2!

whereg̃5g̃(w,s) and g̃05g̃(w0 ,s). Expandingg̃(w,s) aboutw5w0, we obtain¹g̃'¹g̃0, and

g̃0'g̃2
1

Al
¹g̃0•u. ~B3!

Defining

z5Alg̃ ~B4!

and

v5¹g̃0•u, ~B5!

we can write

Q~2g̃0g̃!Q„sgn~ g̃0!g̃1A2/l…5Q~v !Q~v2z!Q~z!Q~2z1A2!1Q~2v !Q~2v1z!Q~2z!Q~z1A2!, ~B6!

Q~ g̃0g̃!Q„2sgn~ g̃0!g̃1A2/l…5Q~2v1z!Q~z!Q~2z1A2!1Q~v2z!Q~2z!Q~z1A2!. ~B7!

Finally, integrating over the variablez we obtain

^^Du&&52
1

Al
F~u!, ~B8!

where

F~u!5~12p!KK d~ g̃0!¹g̃0 (
s56 1

sS Q~sv2A2!1Q~sv !Q~A22sv !
v2

2
D LL

1pKK d~ g̃0!¹g̃0 (
s56 1

sQ~sv1A2!S 211Q~2sv !
v2

2
D LL . ~B9!

Note that the average overs includes averaging over the randomness ofv which depends ons throughg̃, see Eq.~B5!. Also
note that theu dependence ofF comes through its dependence onv.

In a similar fashion we obtain for the second moment of the single-step dynamics
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^^DuiDuj&&5
2

Al
Ti j ~u!, ~B10!

where

Ti j ~u!5~12p!KK d~ g̃0!] i g̃0] j g̃0 (
s56 1

S A2

3
Q~sv2A2!1

sv3

6
Q~sv !Q~A22sv !D LL

1pKK d~ g̃0!] i g̃0] j g̃0 (
s56 1

Q~sv1A2!S A2

3
1

sv3

6
Q~2sv !D LL . ~B11!

Higher moments ofDu have a similar form. The onlyl dependence appears as a prefactor of 1/Al.
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